Simplified RNA secondary structure mapping by automation of SHAPE data analysis
نویسندگان
چکیده
SHAPE (Selective 2'-hydroxyl acylation analysed by primer extension) technology has emerged as one of the leading methods of determining RNA secondary structure at the nucleotide level. A significant bottleneck in using SHAPE is the complex and time-consuming data processing that is required. We present here a modified data collection method and a series of algorithms, embodied in a program entitled Fast Analysis of SHAPE traces (FAST), which significantly reduces processing time. We have used this method to resolve the secondary structure of the first ~900 nt of the hepatitis C virus (HCV) genome, including the entire core gene. We have also demonstrated the ability of SHAPE/FAST to detect the binding of a small molecule inhibitor to the HCV internal ribosomal entry site (IRES). In conclusion, FAST allows for high-throughput data processing to match the current high-throughput generation of data possible with SHAPE, reducing the barrier to determining the structure of RNAs of interest.
منابع مشابه
Relation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملModeling RNA Secondary Structure with Sequence Comparison and Experimental Mapping Data.
Secondary structure prediction is an important problem in RNA bioinformatics because knowledge of structure is critical to understanding the functions of RNA sequences. Significant improvements in prediction accuracy have recently been demonstrated though the incorporation of experimentally obtained structural information, for instance using selective 2'-hydroxyl acylation analyzed by primer ex...
متن کاملDesign, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...
متن کاملQuantitative dimethyl sulfate mapping for automated RNA secondary structure inference.
For decades, dimethyl sulfate (DMS) mapping has informed manual modeling of RNA structure in vitro and in vivo. Here, we incorporate DMS data into automated secondary structure inference using an energy minimization framework developed for 2'-OH acylation (SHAPE) mapping. On six noncoding RNAs with crystallographic models, DMS-guided modeling achieves overall false negative and false discovery ...
متن کاملModeling and automation of sequencing-based characterization of RNA structure.
Sequence census methods reduce molecular measurements such as transcript abundance and protein-nucleic acid interactions to counting problems via DNA sequencing. We focus on a novel assay utilizing this approach, called selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), that can be used to characterize RNA secondary and tertiary structure. We describe a fully a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011